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Abstract

Chemical (conformational) exchange on the ms-µs time scale is reliably identified by the observation of transverse
relaxation rates, Rex, that depend upon the strength of the effective field (ω1eff = γB1eff) used in spin lock or
CPMG experiments. In order to determine if the exchange correlation time,τex, is the fast or slow limit, mea-
surements of (i) signal line shape and (ii) temperature dependence of Rex have been commonly used in studies of
stable, small molecules. However, these approaches are often not applicable to proteins, because sample stability
and solubility, respectively, limit the temperature range and signal sensitivity of experiments. Herein we use a
complex, but general, two-site exchange equation to show when the simple fast exchange equations for Rex are
good approximations, in the case of proteins. We then present a simple empirical equation that approximately
predicts Rex in all exchange regimes, and explains these results in a clear, straightforward manner. Finally we show
how one can reliably determine whetherτex is in the fast or slow exchange limit.

Local conformational changes in proteins on the ms-
µs time scale often contribute to the rate of transverse
spin relaxation, R2, via the chemical exchange mecha-
nism. In the case of two-site exchange, the correlation
time, τex, and relative populations of the exchanging
species, p1 and p2, are the physical parameters of in-
terest that characterize the exchange process. In the
case of highly stable, small molecules, these parame-
ters have been determined by analysis of line shapes
recorded over a wide range of temperature (Johnson,
1965; Farrar and Becker, 1971). Alternatively, they
have been derived from relaxation rates, measured
as a function of the effective field strength,ω1eff =
γB1eff, using Carr–Purcell–Meiboom–Gill (CPMG)
(Luz and Meiboom, 1963) and/or spin-lock (Douglass
and Jones, 1966) pulse sequences. When exchange be-
tween sites is in the fast limit, (δωτex)2� 1 (δω is the
chemical shift difference between the two sites), the
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exchange contribution to the transverse relaxation rate
is given by

Rex = (δω)2p1p2τex/(1+ ω2
1effτ

2
ex) spin-lock (1)

Rex = (δω)2p1p2τex{1− (ω1effτex/
√

3)

tanh(ω1effτex/
√

3)} CPMG (2)

In spite of the different appearances of the right sides
of Equations 1 and 2, numerical simulations show that
Rex has virtually the same dependence onω1eff andτex
for both spin-lock and CPMG experiments (Szyperski
et al., 1993; Mulder, 1999). Hence it is convenient
and useful to think of both experiments as being car-
ried out in effective rotating frame fields; (i)ω1eff =
γ

√
(B2

1 + B2
off ), where Boff is the off-resonance field

in the spin-lock case, and (ii)ω1eff =
√

3/τCPMG,
whereτCPMG is one-half of the duration betweenπ
pulses in the CPMG case. Note that the correspon-
denceω1eff =

√
3/τCPMG insures that Equations 1

and 2 have the same form when (τex/τCPMG)
2 � 1,

i.e., Rex = (δω/ω1eff)
2p1p2/τex. A generalization of
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Equation 2, that applies to multi-site exchange in the
fast exchange limit, has been presented (Allerhand and
Thiele, 1966).

Equations 1 and 2 relate Rex to the parameters
of interest in a clear, simple manner. It is therefore
desirable to determine if one is in the fast exchange
limit where these equations are applicable. In the case
of small, stable molecules one typically employs a
wide temperature range to study exchange in both the
slow and fast limits. Because the signal-to-noise ra-
tio is large, detailed line shape analysis is well suited
for studies in slow or intermediate exchange, while
CPMG and spin-lock experiments are better suited for
investigations in the fast exchange limit (Farrar and
Becker, 1971). In the case of proteins, solubility is lim-
ited and the accessible temperature range is typically
restricted to 10–35◦C. The actual lower and upper
limits are determined by slow tumbling and sample
stability, respectively. Furthermore, changing the tem-
perature of a protein sample can significantly alter site
populations and chemical shifts in unpredictable ways.

These circumstances make it difficult to ascertain
if the fast exchange condition is satisfied. Observa-
tion of one NMR signal per exchanging spin does not
necessarily justify the assumption of fast exchange. In
proteins, site populations will generally be quite dif-
ferent because conformational substates have different
free energies. Note that if the free energy of site 1 ex-
cedes that of site 2 by only 1 kcal M−1, p1/p2 < 0.15.
(Herein, for consistency and without loss of generality,
p1/p2≤ 1 is assumed throughout.) In the case of either
slow or intermediate exchange, it will typically not
be possible to observe the signal from site 1 because
its signal intensity may be as much as (p1/p2)2 times
smaller than that of site 2. The relative intensity of site
1 is diminished both by its smaller population and by
its larger line width.

In the event that the fast exchange limit is not sat-
isfied, a closed form expression for Rex, Equation 3
(Bloom et al., 1965; Carver and Richards, 1972; Davis
et al., 1994), that applies for all values ofδωτex in
the case of the CPMG experiment may be required to
analyze relaxation data:

Rex = 0.5/τex− (0.25/τCPMG)

acosh(D+ coshξ+ −D− cosξ−) (3)

where

D± = 0.5[±1+ (9 + 2(δω)2/(92+ ζ2)1/2]
ξ± = (τCPMG

√
2)[±9 + (92+ ζ2)1/2]1/2

Figure 1. Comparison of plots of Rex (CPMG) vs.τex, obtained
using the general equation (Equation 3) and fast limit equation
(Equation 2) to calculate curves in panels A, B, C and D, E, F re-
spectively. Comparisons are shown for three values ofδω/2π; A and
D: 50 Hz, B and E: 200 Hz and C and F: 1000 Hz. The five curves
in each panel were calculated forω1eff/2π equal to (a) 10 kHz, (b)
3 kHz, (c) 1 kHz, (d) 0.3 kHz, and (e) 0.1 kHz, with p1/p2 = 1/9.
The dashed vertical line in each panel is drawn atτex = 1/δω. In
panels A, B, and C, Rex attains its maximum value whenωaτex =
ca. 1, see Equation 4.

9 = τ−2
ex − (δω)2; ζ = 2δω(p1− p2)τ

−1
ex

In contrast with Equations 1 and 2, the relationship
between Rex and the parameters of interest is difficult
to ascertain from Equation 3. However, Figure 1 pro-
vides a visual comparison of the dependence of Rex
on (τex, δω2, ω1eff) predicted by Equations 2 and 3.
As expected, the two equations make indistinguishable
predictions in the fast exchange limit, (δωτex)

2 � 1
(i.e., to the left of each vertical dashed line), otherwise
they typically predict different values of Rex. However,
examination of Figure 1 shows that the latter is not
always the case. For example, the curves (a) and (b)
generated by both equations are indistinguishable even
on the right sides of the dashed lines.

To explain the latter result, we present a simple em-
pirical expression for Rex, Equation 4 that is applicable
to the CPMG experiment. This is an approximate
equation derived on the basis of physical intuition and
extensive computer simulation:

Rex ≈ (δω)2p1p2τex/(1+ ω2
aτ

2
ex) (4)
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ω2
a =

√
[ω4

1eff+ p2
2(δω)

4]
In contrast with Equation 3, Equation 4 clearly re-
veals the relationship between Rex and the parameters
of interest. Equation 4 predicts values of Rex that
agree with those calculated using Equation 3, within
15%, for all values ofδωτex, when p1/p2 < 0.15. In
particular, Equation 4 predicts that Rex attains its max-
imum value whenω2

aτ
2
ex = ca. 1, in agreement with

the curves calculated using Equation 3 and plotted in
Figure 1.

Equation 4 is of particular interest in two limiting
cases, (i) p2

2(δω)
4 � ω4

1eff and (ii ) ω4
1eff � p2

2(δω)
4.

In the former case, Rex ≈ p1p2(δω)
2τex assuming

fast exchange (δω2τ2
ex � 1), whereas Rex ≈ p1/τex

assuming slow exchange (δω2τ2
ex � 1). This cor-

responds to the low field, lifetime broadening limit.
Note that in the high field limit (ω4

1eff � p2
2(δω)

4),
Equation 4 becomes nearly identical to Equations 1
and 2 for all values ofτex. This is so because, in
the limit of a largeω1eff, second order perturbation
theory, which is used to derive Equations 1 and 2,
applies. Hence, the simple fast limit equations are re-
covered and Equations 1–4 all predict essentially the
same results. Therefore, in Figure 1, curves (a) and
(b) calculated using Equation 3 and plotted in pan-
els (A)–(C), are indistinguishable from their fast limit
counterparts, plotted in panels (D)–(F). It has been
noted elsewhere, that second order perturbation theory
can be used to calculate R1 and R1ρ outside the fast-
exchange limit (Vold and Vold, 1991; Szyperski et al.,
1993; Goldman, 1994) provided that the laboratory or
rotating frame field is greater than the local field of the
perturbation.

In the case of diamagnetic protein spectra,δω is
expected to be less than 2 ppm for1H and 20 ppm for
15N. Hence, the fast-limit exchange Equations 1 and
2 are good approximations for spin-lock experiments
recorded withω1eff/2π greater than ca. 2 kHz and
3 kHz at 500 MHz and 800 MHz, respectively. On
the other hand, protein CPMG experiments are typi-
cally recorded withω1eff/2π < 1 kHz. When spectra
are acquired using such small effective fields, and the
validity of the fast exchange assumption has not been
experimentally demonstrated, analysis of relaxation
data should be carried out using Equation 3. We rec-
ommend this approach even if the fast limit equations
provide satisfactory fits to the data.

A final point that deserves attention is that it is not
trivial to determine if a dynamic process is in the fast
and slow exchange limit, even when Equation 3 is used

Figure 2. Comparison of the dependence of Rex vs. ω1eff/2π in
the fast (a) and slow (b) exchange limits. Both curves were calcu-

lated using Equation 3 with p1/p2 = 1/9 and (a)τfex = 0.25 ms
and (δω)f /2π = 160 Hz, fast exchange, and (b)τsex = 5 ms,
(δω)s/2π = 600 Hz, slow exchange. As discussed by Allerhand
and Gutowsky (1965), Rex is an oscillatory function ofδω/ω1eff
in the slow exchange limit. This is the source of the damped
modulation seen in (b).

to analyze relaxation data acquired as a function of
ω1eff. This is demonstrated by the plots of Rex vs.ω1eff
in Figure 2, which were calculated using Equation 3.
The parameter sets, listed in the caption of Figure 2,
show that curves (a) and (b) correspond to fast and
slow exchange, respectively. The similarity of the
curves is striking when one considers thatτsex= 20τfex.
The parameter sets used to generate the curves were
chosen with the aid of Equation 4 which predicts the
following approximate expressions for Rex in the fast
and slow exchange limits respectively:

R
f
ex ≈ (δωf )2pf1 pf2 τ

f
ex/(1+ ω2

1effτ
f 2
ex ) (5)

Rsex ≈ (ps1/τsex)/

√
(1+ ω4

1eff/(p
s2
2 (δω

s)4)) (6)

Using these equations one readily finds parameter
sets that satisfy the conditions, (δωf )2p

f

1 p
f

2 τ
f
ex ≈

(ps1/τ
s
ex), τ

f2
ex ≈ 1/(ps2(δω

s)2 andτ
f
ex � τsex which

insure that Rex has a similar dependence onω1eff in
both the fast and slow exchange limits. In spite of
the similarity of the curves in Figure 2, careful mea-
surement of Rex over a 10-fold range of15N and/or
1H effective fields (ω1eff) should reliably identify the
time regime of the exchange process. In this regard, it
has been noted that ratios of Rex measured at different
values ofω1eff (Szyperski et al., 1993; Ishima et al.,
1998) amplify the difference in slopes in the fast and
slow exchange limits, and are therefore well suited to
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distinguish the fast and slow exchange regimes. Fi-
nally, we note that CPMG measurements at two values
of the external field,B0, may distinguish fast from
slow exchange in the lowω1eff limit, ω4

1eff � δω4.
In this limit, Equation 4 shows thatRex ∝ δω2 in
fast exchange, butRex is independent ofδω in slow
exchange.

Taken together, these considerations show that
careful analysis of Rex data is necessary to derive cor-
rect estimates ofτex from rotating frame relaxation
experiments in proteins.
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